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ABSTRACT: As the complexity of synthetic genetic circuits
increases, modeling is becoming a necessary first step to inform
subsequent experimental efforts. In recent years, the design
automation community has developed a wealth of computa-
tional tools for assisting experimentalists in designing and
analyzing new genetic circuits at several scales. However,
existing software primarily caters to either the DNA- or single-
cell level, with little support for the multicellular level. To
address this need, the iBioSim software package has been
enhanced to provide support for modeling, simulating, and
visualizing dynamic cellular populations in a two-dimensional
space. This capacity is fully integrated into the software,
capitalizing on iBioSim’s strengths in modeling, simulating, and analyzing single-celled systems.
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Multicellularity and the resulting emergent behaviors give
rise to much of the complexity found in nature. Biology

is replete with elegant developmental programs that rely on the
communication and cooperation of cells to form complicated
structures such as tissues or biofilms. Synthetic biology
promises to develop cellular populations for a number of
exciting medical applications including treatment of cancer and
infections, development of vaccines, microbiome engineering,
and cell therapy and regenerative medicine.1 Moreover,
engineering at this scale enables biologists to create synthetic
developmental programs in order to better understand how
natural developmental programs work and the ways in which
they fail.
While much of the initial focus of synthetic biology has been

on engineering single-cell behaviors, a number of publications
have shown the potential for multicellular engineering. Using a
genetic bandpass filter and the quorum sensing circuitry from
Vibrio f ischeri, patterns can be generated in an E. coli
population.2 More recently, it has been shown that a genetic
density sensor and an engineered chemotaxis pathway can be
used to create concentric circle patterns with E. coli.3 Along
with pattern formation, distributed computation of logic gate
functions has been demonstrated using populations of yeast
and E. coli.4

As researchers’ ability to engineer synthetic genetic circuits
grows, tools for modeling and simulating multicellular systems
are needed to augment the wet lab advances and catalyze the
move toward multicellular engineering. Current software
primarily caters to DNA assembly, plasmid design, and
single-cell modeling.5−9 Tools do exist for multicellular
modeling;10−12 however, most are insufficient for synthetic
biologists because of their lack of support for design-oriented
uses. Recently, gro13 and CellModeller4,14 software for

multicellular modeling with a design orientation, have been
published. iBioSim distinguishes itself from these two programs
with its graphical user interface, analysis and abstraction tools,
the use of standards representations, physics-agnostic spatial
modeling, and Gillespie SSA-based simulation.
iBioSim has been in active development for several years.15,16

Aimed at the synthetic biologist, it provides an integrated
environment for modeling and analyzing genetic circuits,
enabling efficient design space exploration. iBioSim supports
the representation of these circuits using a model stored in the
Systems Biology Markup Language (SBML)17 that can be
annotated with DNA components from a collection described
using the Synthetic Biology Open Language (SBOL).18 These
models can be quickly created and modified using a drag-and-
drop graphical user interface (see Figure 1, as well as a movie in
the Supporting Information). Several analysis methods are
supported, including ordinary differential equations, stochastic
simulation, and Markovian analysis. The efficiency of these
methods is enhanced by automatic reaction-based and logical
abstraction methods.19−23 Simulation data can be analyzed
using built-in graphing and visualization tools or saved as one of
several data formats (e.g., CSV) for import into other analysis
programs.
This paper describes enhancements to iBioSim to support

multicellular modeling, namely, a graphical interface for design,
a spatial modeling framework, SBML annotations for dynamic
process events, an SSA-based simulator with support for cellular
population dynamics, and a visualization environment for
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analysis of simulation data. A running example to illustrate
these new features is the design and analysis of a quorum trigger
genetic circuit,24 which is shown in Figure 2. The quorum trigger

circuit is a sensor that enables a cell to detect the presence of a
signaling molecule in its environment (Env). The circuit
decides that it is in the presence of the signaling molecule when
it both senses the molecule itself and receives a signal from its
neighbor cells, via quorum sensing, that they also believe the
signal is present. Clearly, the utility of this circuit can be
evaluated only by considering population dynamics.
Spatial Modeling. All of the population-based enhance-

ments to iBioSim rely on a spatial modeling framework. This
framework is grid-based, with a single compartment (e.g., a cell)
allowed at each grid location. A compartment can contain a
model (e.g., a genetic circuit), allowing for an arbitrary number
of these throughout the grid. Each grid location is considered
distinct from every other, creating spatial separation. Moreover,
if a compartment is present at a grid location, separation exists
between the compartment and the grid location space. The
compartment is considered to be a well-mixed space, as is each
grid location. These separations thus create a representation of

two-dimensional space and provide a basis for diffusion
reactions.
Within a grid location, the separation between the grid space

and compartment space can be bridged with reversible diffusion
reactions. As these reactions go between an “intracellular” and
“extracellular” space, they can be thought of as membrane
diffusion reactions. Similarly, between grid locations, grid
spaces can be connected with diffusion reactions, which can be
thought of as spatial diffusion reactions. These allow species to
travel across the grid and therefore from one cell to another,
enabling the modeling of cellular signaling. Figure 3 shows the

possible diffusion reactions on a 2 × 2 grid. Diagonal diffusion
reactions between grid locations are not created due to the
added computational requirements and the fact that such a
diagonal diffusion reaction would occur with low probability.
Since the user only explicitly creates species within the

compartments, each diffusible species has one grid species per
grid location created automatically. Membrane diffusion
reactions are added to transfer between the interior species
and the grid species, and spatial diffusion reactions are added to
transfer between two grid species. Species marked as diffusible
within the model editor cause the software to automatically

Figure 1. The iBioSim graphical user interface for model creation. To the left is the list of the models in the current workspace. The center panel
shows the graphical interface for genetic circuit editing. A simple genetic circuit is shown with species in blue. The arcs represent repression or
activation relationships between the species. The green rectangle represents an event. The panel in the foreground shows an editor for a particular
selected species (the blue rectangle highlighted with green dots). This editor can be used to alter kinetic parameters and attributes for the species and
to associate SBOL constructs with the species.

Figure 2. The genetic circuit diagram for the quorum trigger
represented using SBOL visual symbols. This circuit is designed to
produce a density-dependent response to an environmental signal
(Env). This response is achieved using the quorum sensing molecule
3OC6HSL. The 3OC6HSL molecule can either come from LuxI
generated at the basal rate of the pComp promoter, or it can come
from diffusion into the cell from 3OC6HSL available in the medium
that is produced by other cells.

Figure 3. A two-by-two grid with each location containing a single cell
model. The arrows indicate the diffusion reactions that can connect
the discrete well-mixed spaces. Gray arrows indicate diffusion between
two grid locations, and black arrows indicate diffusion between a cell’s
interior space and a grid location.
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generate these species and reactions. Forward and reverse
diffusion rates are associated with a particular species and can
be specified by the user. These rates are applied to all diffusion
reactions for that species, in every compartment. Diffusion rates
can be set to zero if the user does not want the reactions to
occur. In the future, the user will be able to specify unique
diffusion rates for individual compartments.
The diffusion reactions are simple first-order reactions of the

form:
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where s(i,j) is the amount of species s within the cell in the
location (i,j), se

(i,j) is the amount of species s outside the cell in
the location (i,j), kdiff is the diffusion rate of species s within the
grid, kidiff is the membrane diffusion rate entering the cell, and
kediff is the membrane diffusion rate exiting the cell.

Dynamic Modeling. While static spatial modeling and
diffusion can enable the creation of models for many interesting
applications, certain important phenomena such as population
control and artificial developmental programs (e.g., cells
apoptosing to reveal a pattern) require dynamic events: cell
movement, duplication, and death. To provide this capacity,
iBioSim supports new dynamic events for compartment
models. These are composed of regular SBML events with an
additional annotation to specify a dynamic action that occurs
when the event fires. SBML events themselves are composed of
a trigger expression, a delay value, and assignments. During
every time-step of a simulation, trigger expressions are
evaluated for all untriggered events. If a trigger evaluates to
true, the event becomes triggered and fires after the given delay.
When the event fires, the specified assignments are performed.
If an additional dynamic annotation is attached to an event, the
simulator in iBioSim interprets and performs the dynamic
action when it fires. There are three dynamic events: death,
duplication, and movement.
A death event removes all traces of whichever compartment

the event is triggered within from the simulation data
structures. In other words, all species and other SBML
elements associated with this compartment are removed from
the simulation from this point forward. A future enhancement
of the death event that we are considering is to potentially

Figure 4. An example of the use of SBML dynamic array annotations. This block of SBML is an array of nine degradation reactions. The arrays are
described in the annotation tags for the parameters and the reaction. Additionally, a function get2DArrayElement is called within the kinetic law of
the reaction. This function takes array indices and returns the requested array element. By using annotations on parameters in the kinetic law to
encapsulate information about the number of reactions, the model is more compact and is easier to expand and contract by simply modifying the
annotations.
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move some portion of the diffusible species into the
corresponding species in the grid location.
A duplication event creates a new copy of the compartment,

using the existing compartment’s SBML elements (i.e., species,
reactions, etc.) as templates for the new version. Species are
apportioned to the parent and child compartments via a 50/50
split by default, but event assignments associated with the
duplication event can be used to override this. In the latter case,
the child gets whatever is left over after the assignments to the
parent take place in order to conserve species counts.
Symmetric and asymmetric versions of duplication events are

provided. Symmetric duplication resets the duplication event
trigger of the parent compartment, allowing it to fire again,
while asymmetric duplication does not. Symmetric division can
thus be thought of as binary fission, where the two resulting
cells do not share a parent-child relationship. Asymmetric
division can be used to model parent-child relationships, in
which the parent is no longer able to divide.
For visualization purposes, the locations of compartments

within the grid are tracked, and new child compartments after
duplication are placed in a random neighboring location to the
parent (including diagonally adjacent locations), with existing
compartments shifted out of the way in the direction of
movement to open up the adjacent location. If the new child
compartment is placed in a location outside of the current grid
bounds, or if a shifted cell is shifted outside of the current grid
bounds, the grid automatically expands, creating new grid
diffusion species and reactions for the new locations.
A movement event simply moves a compartment to one of

the eight neighboring locations, either randomly or as specified
by the user. As with duplication, compartments are shifted to
make room for the moved compartment. To enable movement
based on species amounts in neighboring locations, functions
are provided for movement events, which can be used in the
trigger expressions. For example, a threshold species amount in
a neighboring location can be used to move the compartment
in that direction, enabling chemotaxis modeling.
SBML Modeling. All of the models in iBioSim are

represented using SBML Level 3 Version 1. The current
version of SBML supports only static modeling. The creation or
destruction of SBML objects cannot be specified, meaning that
a model must remain constant throughout simulation. Dynamic
models by definition change at runtime; thus, enhancements to
SBML are required in order for it to support dynamic models.
To circumvent these limitations, custom annotations are

used to encode dynamic maps and the aforementioned dynamic
events. Dynamic map annotations are used in several places.
They are used to represent name-location pairs for compart-
ments; they are used for representing arrays of dynamic events
and grid-level reactions, that is, diffusion and degradation
reactions for grid species; and they are used for representing
arrays of identical or different submodels that comprise the
grid. For simulation, these SBML annotations are used as
templates for creating the simulator’s data structures. Figure 4
shows an example of the annotations. These measures are
intended to be temporary, as a more permanent solution for
dynamic modeling within SBML is under development with the
SBML community. Our annotation strategy should provide a
foundation for the future designs of SBML packages to support
these models.
Multicellular Simulation. The discrete nature of the

multicellular modeling framework used lends itself to stochastic
simulation and can thus be simulated using a standard Gillespie

SSA simulator. However, dynamic events require the model to
be altered at runtime, something that many simulators do not
support. Our new simulator supports dynamic events as well as
the large-scale nature of multicellular models (i.e., thousands of
reactions). The simulator uses the recently developed SSA
composition and rejection method.25 The composition and
rejection method creates and maintains groups of reactions
according to their propensities during runtime. To choose a
reaction, the algorithm randomly chooses a group and then
randomly chooses a reaction and a propensity. If the propensity
is less than the chosen reaction’s propensity, that reaction is
chosen; otherwise, a new reaction and propensity are chosen
within the same group until the process finds a reaction to fire.
This approach is equivalent to previous exact Gillespie
algorithms, and can be programmed in a constant-time manner.
Our experience indicates that this algorithm is faster and

scales better than the Gillespie SSA Direct method with a
dependency graph. Figure 5 shows simulation time data for the

SSA Direct method and the SSA-CR algorithm. These are run
using increasingly large (2 × 2, 4 × 4, 6 × 6) static grids with
152, 640, and 1464 reactions, respectively. The SBML for the 2
× 2 model can be found in the Supporting Information.
When the counts of extracellular grid species grow large, the

propensities of the corresponding diffusion reactions between
the grid species during simulation grow large as well, resulting
in a simulation bottleneck. Indeed, in excess of 99% of the
reactions being fired can be grid diffusion reactions. To address
this, our tool utilizes a simple stoichiometry amplif ication
abstraction,20 which allows users to group diffusion reactions
and speed up simulation time. The algorithm works by
multiplying the stoichiometry of the diffusion reaction by n
and dividing the reaction’s propensity by n. For instance, if a
stoichiometry amplification value of 5 is chosen, extracellular
grid reactions move five species per reaction, and this reaction’s
propensity is divided by five. So the reaction occurs one-fifth as
frequently, but it moves five times the species. This speeds up
simulation time significantly (up to n times as fast) for models
with large quantities of diffusible species without appreciable
macroscopic differences in the simulation outcome. Figure 5
shows the speedup from using stoichiometry amplification
values of 2 and 4 and the SSA-CR algorithm. While the overall
simulation times may not appear to be too significant, it should
be emphasized that during genetic circuit design, one may need

Figure 5. Runtime comparison between different Gillespie SSA
algorithms on increasingly larger grid models of a population of cells
containing a quorum trigger circuit. The sa2 and sa4 data are from
using stoichiometry amplification values of 2 and 4, respectively. The
results are the average runtimes over five simulation runs. Error bars
are included to show 1 standard deviation.
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to perform many simulations for different circuit configurations
and parameter sets. In this case, a speedup of 5 times over the
SSA-direct is significant. Furthermore, the benefits are even
more pronounced for simulations of dynamic models that can
grow to be very large.
Visualization. iBioSim’s visualization environment has been

enhanced for both static and dynamic multicellular models. A
multicellular model is displayed as a grid (see Figure 3), which
can be animated over time using time series data from a
simulation’s output. Appearances (e.g., colors) can be attached
to species counts of the model to allow for visualizing the
model’s behavior in a way that approximates fluorecent
markers. Appearances can be associated with species both
within compartments (which change the appearance of the
compartment itself) and in the extracellular space to visualize
diffusible species moving around the grid. For dynamic models,
child compartments inherit the appearance scheme of the
parent, and grid appearances are extended automatically as the
grid expands, making it easy to visualize a population as it
grows.
Figure 6 shows this process occurring over the time-course of

a dynamic model with the quorum trigger. This figure and the
movies in the Supporting Information show how a population
of cells with a quorum trigger circuit behaves over time under
different environmental conditions. This visual presentation
aids the designer in determining if the dynamic response of the
circuit achieves desired goals. Furthermore, statistics for the
time-series data files can be generated for dynamic models,
which can be used with the graphing functionality within

iBioSim to further analyze the system, e.g., in aggregate over
multiple simulation runs.

Discussion. The enhancements to iBioSim to support
modeling, simulating, and visualizing dynamic cellular pop-
ulations in a two-dimensional space improve our ability to
explore design trade-offs in genetic circuits that must work
within cellular populations. These enhancements include a new
graphical interface for design, a spatial modeling framework,
SBML annotations for dynamic process events, a new SSA-CR-
based simulator with support for cellular population dynamics,
and a visualization environment for analysis of simulation data.
Possible future directions include modeling extensions to
support a broader range of cellular behavior such as physical
interactions, support for physics-based spatial modeling,
simulation speedup via parallelization and GPU optimization,
and creating a feedback loop between our software’s develop-
ment and collaboration with experimentalists.
The software space for CAD tools aimed at synthetic

biologists is a new one, and a recent wave of tools for
population-level design is now coming online.13,14 iBioSim
distinguishes itself from these other tools with its graphical
interface, stochastic simulation algorithms, and support for the
SBML and SBOL languages. We hope that our efforts are
instructive to the community and help guide the development
of this new generation of software tools for cellular population
engineering.

Figure 6. Three separate time points (a being first, c being last) in a dynamic simulation of the quorum trigger model shown in Figure 2 with an
added GFP production reaction that is activated by the complex. The rectangular shapes on the grid represent cells, the population of which grows
throughout the simulation. Extracellular 3OC6HSL has been associated with a red color scheme. Intracellular GFP is associated with a green color
scheme. Red thus shows 30C6HSL diffusing outside of the cells, which turn green in a density-dependent manner. In this simulation, there is a
significant amount of the environmental trigger molecule available, and the result is that the population becomes activated.
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■ METHODS
iBioSim itself and the simulation algorithms described are
written in Java. The SSA Composition and Rejection algorithm
is based on the algorithm described by Slepoy et al.,25 with
extensions. Simulations are run on a dual-core Celeron SU2300
with 1 GB of memory. The visualization framework is written
using JGraphX,26 an open-source Java graph visualization
library. Additionally, the GNU Trove data structure library,27

the Jafama fast math library,28 and the Flanagan scientific and
numerical library29 are used. iBioSim is freely available from
http://www.async.ece.utah.edu/iBioSim/.

■ ASSOCIATED CONTENT

*S Supporting Information
A movie demonstrating model creation in iBioSim, SBML
models of the quorum trigger and a 2 × 2 grid of the quorum
trigger submodel, and a timelapse movie of a dynamic quorum
trigger grid model. This information is available free of charge
via the Internet at http://pubs.acs.org.
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